extension | φ:Q→Aut N | d | ρ | Label | ID |
C25.1C22 = C24.4Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.1C2^2 | 128,36 |
C25.2C22 = C23⋊2C42 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.2C2^2 | 128,169 |
C25.3C22 = C24.50D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.3C2^2 | 128,170 |
C25.4C22 = C24.5Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.4C2^2 | 128,171 |
C25.5C22 = C24.52D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.5C2^2 | 128,172 |
C25.6C22 = C2×C23.9D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.6C2^2 | 128,471 |
C25.7C22 = C25⋊C4 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.7C2^2 | 128,513 |
C25.8C22 = C24.68D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.8C2^2 | 128,551 |
C25.9C22 = C25.C22 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.9C2^2 | 128,621 |
C25.10C22 = C24.78D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.10C2^2 | 128,630 |
C25.11C22 = C24⋊D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.11C2^2 | 128,753 |
C25.12C22 = C24⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.12C2^2 | 128,761 |
C25.13C22 = C23⋊C42 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.13C2^2 | 128,1005 |
C25.14C22 = C2×C23.23D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.14C2^2 | 128,1019 |
C25.15C22 = C2×C24.C22 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.15C2^2 | 128,1021 |
C25.16C22 = C2×C24.3C22 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.16C2^2 | 128,1024 |
C25.17C22 = C24.90D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.17C2^2 | 128,1040 |
C25.18C22 = C23.191C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.18C2^2 | 128,1041 |
C25.19C22 = C23.194C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.19C2^2 | 128,1044 |
C25.20C22 = C24.91D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.20C2^2 | 128,1047 |
C25.21C22 = C23.203C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.21C2^2 | 128,1053 |
C25.22C22 = D4×C22⋊C4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.22C2^2 | 128,1070 |
C25.23C22 = C23.224C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.23C2^2 | 128,1074 |
C25.24C22 = C23.240C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.24C2^2 | 128,1090 |
C25.25C22 = C23.257C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.25C2^2 | 128,1107 |
C25.26C22 = C2×C23⋊2D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.26C2^2 | 128,1116 |
C25.27C22 = C2×C23⋊Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.27C2^2 | 128,1117 |
C25.28C22 = C2×C23.10D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.28C2^2 | 128,1118 |
C25.29C22 = C2×C23.Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.29C2^2 | 128,1121 |
C25.30C22 = C2×C23.11D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.30C2^2 | 128,1122 |
C25.31C22 = C2×C23.4Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.31C2^2 | 128,1125 |
C25.32C22 = C23.304C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.32C2^2 | 128,1136 |
C25.33C22 = C24.94D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.33C2^2 | 128,1137 |
C25.34C22 = C23.308C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.34C2^2 | 128,1140 |
C25.35C22 = C24⋊8D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.35C2^2 | 128,1142 |
C25.36C22 = C23.311C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.36C2^2 | 128,1143 |
C25.37C22 = C24.95D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.37C2^2 | 128,1144 |
C25.38C22 = C23.318C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.38C2^2 | 128,1150 |
C25.39C22 = C23.324C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.39C2^2 | 128,1156 |
C25.40C22 = C23.333C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.40C2^2 | 128,1165 |
C25.41C22 = C23.335C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.41C2^2 | 128,1167 |
C25.42C22 = C24⋊4Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.42C2^2 | 128,1169 |
C25.43C22 = C23.372C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.43C2^2 | 128,1204 |
C25.44C22 = C23.380C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.44C2^2 | 128,1212 |
C25.45C22 = C23.382C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.45C2^2 | 128,1214 |
C25.46C22 = C24.96D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.46C2^2 | 128,1215 |
C25.47C22 = C23.434C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.47C2^2 | 128,1266 |
C25.48C22 = C23.439C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.48C2^2 | 128,1271 |
C25.49C22 = C23.461C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.49C2^2 | 128,1293 |
C25.50C22 = C24⋊9D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.50C2^2 | 128,1345 |
C25.51C22 = C24⋊10D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.51C2^2 | 128,1349 |
C25.52C22 = C24.97D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.52C2^2 | 128,1354 |
C25.53C22 = C24⋊5Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.53C2^2 | 128,1358 |
C25.54C22 = C23.568C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.54C2^2 | 128,1400 |
C25.55C22 = C23.569C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.55C2^2 | 128,1401 |
C25.56C22 = C23.570C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.56C2^2 | 128,1402 |
C25.57C22 = C23.578C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.57C2^2 | 128,1410 |
C25.58C22 = C23.584C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.58C2^2 | 128,1416 |
C25.59C22 = C23.585C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.59C2^2 | 128,1417 |
C25.60C22 = C23.597C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.60C2^2 | 128,1429 |
C25.61C22 = C23.635C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.61C2^2 | 128,1467 |
C25.62C22 = C23.636C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.62C2^2 | 128,1468 |
C25.63C22 = C24⋊11D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.63C2^2 | 128,1544 |
C25.64C22 = C24⋊6Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.64C2^2 | 128,1572 |
C25.65C22 = C24.15Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.65C2^2 | 128,1574 |
C25.66C22 = C22×C23⋊C4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.66C2^2 | 128,1613 |
C25.67C22 = C2×C22.11C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.67C2^2 | 128,2157 |
C25.68C22 = C22×C4⋊D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.68C2^2 | 128,2164 |
C25.69C22 = C22×C22.D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.69C2^2 | 128,2166 |
C25.70C22 = C22×C4.4D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.70C2^2 | 128,2168 |
C25.71C22 = C22×C42⋊2C2 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.71C2^2 | 128,2170 |
C25.72C22 = C22×C4⋊1D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 64 | | C2^5.72C2^2 | 128,2172 |
C25.73C22 = C2×C22.29C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.73C2^2 | 128,2178 |
C25.74C22 = C2×C22.32C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.74C2^2 | 128,2182 |
C25.75C22 = C2×C23⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.75C2^2 | 128,2188 |
C25.76C22 = C2×D4⋊5D4 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.76C2^2 | 128,2195 |
C25.77C22 = C2×C22.45C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.77C2^2 | 128,2201 |
C25.78C22 = C22.79C25 | φ: C22/C1 → C22 ⊆ Aut C25 | 16 | | C2^5.78C2^2 | 128,2222 |
C25.79C22 = C2×C22.54C24 | φ: C22/C1 → C22 ⊆ Aut C25 | 32 | | C2^5.79C2^2 | 128,2257 |
C25.80C22 = C24.17Q8 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.80C2^2 | 128,165 |
C25.81C22 = C2×C4×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.81C2^2 | 128,1000 |
C25.82C22 = C2×C24⋊3C4 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.82C2^2 | 128,1009 |
C25.83C22 = C2×C23.7Q8 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.83C2^2 | 128,1010 |
C25.84C22 = C2×C23.34D4 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.84C2^2 | 128,1011 |
C25.85C22 = C25.85C22 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.85C2^2 | 128,1012 |
C25.86C22 = C2×C23.8Q8 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.86C2^2 | 128,1018 |
C25.87C22 = C4×C22≀C2 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.87C2^2 | 128,1031 |
C25.88C22 = C23≀C2 | φ: C22/C2 → C2 ⊆ Aut C25 | 16 | | C2^5.88C2^2 | 128,1578 |
C25.89C22 = C24⋊13D4 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.89C2^2 | 128,1579 |
C25.90C22 = C24⋊8Q8 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.90C2^2 | 128,1580 |
C25.91C22 = C24.166D4 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.91C2^2 | 128,1581 |
C25.92C22 = C23×C22⋊C4 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.92C2^2 | 128,2151 |
C25.93C22 = C22×C42⋊C2 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.93C2^2 | 128,2153 |
C25.94C22 = D4×C22×C4 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.94C2^2 | 128,2154 |
C25.95C22 = C22×C22⋊Q8 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.95C2^2 | 128,2165 |
C25.96C22 = C2×C22.19C24 | φ: C22/C2 → C2 ⊆ Aut C25 | 32 | | C2^5.96C2^2 | 128,2167 |
C25.97C22 = C23×C4○D4 | φ: C22/C2 → C2 ⊆ Aut C25 | 64 | | C2^5.97C2^2 | 128,2322 |
C25.98C22 = C22×C2.C42 | central extension (φ=1) | 128 | | C2^5.98C2^2 | 128,998 |
C25.99C22 = C23×C4⋊C4 | central extension (φ=1) | 128 | | C2^5.99C2^2 | 128,2152 |
C25.100C22 = Q8×C24 | central extension (φ=1) | 128 | | C2^5.100C2^2 | 128,2321 |